Go语言代码检查和优化

代码规范检查

什么是代码规范检查

代码规范检查,顾名思义,是从 Go 语言层面出发,依据 Go 语言的规范,对你写的代码进行的静态扫描检查,这种检查和你的业务无关。

比如你定义了个常量,从未使用过,虽然对代码运行并没有造成什么影响,但是这个常量是可以删除的,代码如下所示:

1
2
3
const name = "Golang"
func main() {
}

示例中的常量 name 其实并没有使用,所以为了节省内存你可以删除它,这种未使用常量的情况就可以通过代码规范检查检测出来。
再比如,你调用了一个函数,该函数返回了一个 error,但是你并没有对该 error 做判断,这种情况下,程序也可以正常编译运行。但是代码写得不严谨,因为返回的 error 被我们忽略了。代码如下所示:

1
2
3
func main() {
os.Mkdir("tmp",0666)
}

示例代码中,Mkdir 函数是有返回 error 的,但是并没有对返回的 error 做判断,这种情况下,哪怕创建目录失败,你也不知道,因为错误被忽略了。如果使用代码规范检查,这类潜在的问题也会被检测出来。

以上两个例子可以理解什么是代码规范检查、它有什么用。除了这两种情况,还有拼写问题、死代码、代码简化检测、命名中带下划线、冗余代码等,都可以使用代码规范检查检测出来。

golangci-lint

要想对代码进行检查,则需要对代码进行扫描,静态分析写的代码是否存在规范问题。

小提示:静态代码分析是不会运行代码的。

可用于 Go 语言代码分析的工具有很多,比如 golint、gofmt、misspell 等,如果一一引用配置,就会比较烦琐,所以通常我们不会单独地使用它们,而是使用 golangci-lint。

golangci-lint 是一个集成工具,它集成了很多静态代码分析工具,便于我们使用。通过配置这一工具,我们可以很灵活地启用需要的代码规范检查。

如果要使用 golangci-lint,首先需要安装。因为 golangci-lint 本身就是 Go 语言编写的,所以我们可以从源代码安装它,打开终端,输入如下命令即可安装。

1
go install github.com/golangci/golangci-lint/cmd/[email protected]

安装完成后,在终端输入如下命令,检测是否安装成功。

1
2
golangci-lint version
golangci-lint has version v1.49.0 built from (unknown, mod sum: "h1:I8WHOavragDttlLHtSraHn/h39C+R60bEQ5NoGcHQr8=") on (unknown)

小提示:在 MacOS 下也可以使用 brew 来安装 golangci-lint。

好了,安装成功 golangci-lint 后,就可以使用它进行代码检查了,我以上面示例中的常量 name 和 Mkdir 函数为例,演示 golangci-lint 的使用。在终端输入如下命令回车:

1
2
3
4
5
6
7
8
9
10
golangci-lint run .
//结果
main.go:8:10: Error return value of `os.Mkdir` is not checked (errcheck)
os.Mkdir("tmp", 0666)
^
main.go:5:7: const `name` is unused (unused)
const name = "Golang"
^


通过代码检测结果可以看到,两个代码规范问题都被检测出来了。

golangci-lint 配置

golangci-lint 的配置比较灵活,比如你可以自定义要启用哪些 linter。golangci-lint 默认启用的 linter,包括这些:

1
2
3
4
5
6
7
8
9
10
deadcode - 死代码检查
errcheck - 返回错误是否使用检查
gosimple - 检查代码是否可以简化
govet - 代码可疑检查,比如格式化字符串和类型不一致
ineffassign - 检查是否有未使用的代码
staticcheck - 静态分析检查
structcheck - 查找未使用的结构体字段
typecheck - 类型检查
unused - 未使用代码检查
varcheck - 未使用的全局变量和常量检查

小提示:golangci-lint 支持的更多 linter,可以在终端中输入 golangci-lint linters 命令查看,并且可以看到每个 linter 的说明。

如果要修改默认启用的 linter,就需要对 golangci-lint 进行配置。即在项目根目录下新建一个名字为 .golangci.yml 的文件,这就是 golangci-lint 的配置文件。在运行代码规范检查的时候,golangci-lint 会自动使用它。假设我只启用 unused 检查,可以这样配置:

1
2
3
4
5
6
7
.golangci.yml

linters:
disable-all: true
enable:
- unused

在团队多人协作开发中,有一个固定的 golangci-lint 版本是非常重要的,这样大家就可以基于同样的标准检查代码。要配置 golangci-lint 使用的版本也比较简单,在配置文件中添加如下代码即可:

1
2
service:
golangci-lint-version: 1.32.2 # use the fixed version to not introduce new linters unexpectedly

此外,你还可以针对每个启用的 linter 进行配置,比如要设置拼写检测的语言为 US,可以使用如下代码设置:

1
2
3
linters-settings:
misspell:
locale: US

golangci-lint 的配置比较多,你自己可以灵活配置。关于 golangci-lint 的更多配置可以参考官方文档,给出一个常用的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
.golangci.yml

linters-settings:
golint:
min-confidence: 0
misspell:
locale: US
linters:
disable-all: true
enable:
- typecheck
- goimports
- misspell
- govet
- golint
- ineffassign
- gosimple
- deadcode
- structcheck
- unused
- errcheck
service:
golangci-lint-version: 1.32.2 # use the fixed version to not introduce new linters unexpectedly

集成 golangci-lint 到 CI

代码检查一定要集成到 CI 流程中,效果才会更好,这样开发者提交代码的时候,CI 就会自动检查代码,及时发现问题并进行修正。

不管你是使用 Jenkins,还是 Gitlab CI,或者 Github Action,都可以通过Makefile的方式运行 golangci-lint。现在我在项目根目录下创建一个 Makefile 文件,并添加如下代码:

1
2
3
4
5
6
7
8
9
10
Makefile

getdeps:
@mkdir -p ${GOPATH}/bin
@which golangci-lint 1>/dev/null || (echo "Installing golangci-lint" && go get github.com/golangci/golangci-lint/cmd/[email protected])
lint:
@echo "Running [email protected] check"
@GO111MODULE=on ${GOPATH}/bin/golangci-lint cache clean
@GO111MODULE=on ${GOPATH}/bin/golangci-lint run --timeout=5m --config ./.golangci.yml
verifiers: getdeps lint

好了,现在你就可以把如下命令添加到你的 CI 中了,它可以帮你自动安装 golangci-lint,并检查你的代码。

1
make verifiers

性能优化

性能优化的目的是让程序更好、更快地运行,但是它不是必要的,这一点一定要记住。所以在程序开始的时候,不必刻意追求性能优化,先大胆地写代码就好了,写正确的代码是性能优化的前提

堆分配还是栈

在比较古老的 C 语言中,内存分配是手动申请的,内存释放也需要手动完成

  • 手动控制有一个很大的好处就是你需要多少就申请多少,可以最大化地利用内存

  • 但是这种方式也有一个明显的缺点,就是如果忘记释放内存,就会导致内存泄漏

所以,为了让程序员更好地专注于业务代码的实现,Go 语言增加了垃圾回收机制,自动地回收不再使用的内存。

Go 语言有两部分内存空间:栈内存堆内存

栈内存由编译器自动分配和释放,开发者无法控制。栈内存一般存储函数中的局部变量、参数等,函数创建的时候,这些内存会被自动创建;函数返回的时候,这些内存会被自动释放

堆内存的生命周期比栈内存要长,如果函数返回的值还会在其他地方使用,那么这个值就会被编译器自动分配到堆上。堆内存相比栈内存来说,不能自动被编译器释放,只能通过垃圾回收器才能释放,所以栈内存效率会很高。

逃逸分析

既然栈内存的效率更高,肯定是优先使用栈内存。那么 Go 语言是如何判断一个变量应该分配到堆上还是栈上的呢?这就需要逃逸分析了。下面通过一个示例来学习逃逸分析,代码如下:

1
2
3
4
5
func newString() *string{
s:=new(string)
*s = "Golang"
return s
}

在这个示例中:

  • 通过 new 函数申请了一块内存;

  • 然后把它赋值给了指针变量 s;

  • 最后通过 return 关键字返回。

小提示:以上 newString 函数是没有意义的,这里只是为了方便演示。
现在通过逃逸分析来看下是否发生了逃逸,命令如下:

1
2
3
4
5
go build -gcflags="-m -l" .
结果
# awesomeProject
./main.go:4:10: new(string) escapes to heap

在这一命令中,-m 表示打印出逃逸分析信息,-l 表示禁止内联,可以更好地观察逃逸。从以上输出结果可以看到,发生了逃逸,也就是说指针作为函数返回值的时候,一定会发生逃逸

逃逸到堆内存的变量不能马上被回收,只能通过垃圾回收标记清除,增加了垃圾回收的压力,所以要尽可能地避免逃逸,让变量分配在栈内存上,这样函数返回时就可以回收资源,提升效率。

下面我对 newString 函数进行了避免逃逸的优化,优化后的函数代码如下:

1
2
3
4
5
func newString() string{
s:=new(string)
*s = "Golang"
return *s
}

再次通过命令查看以上代码的逃逸分析,命令如下:

1
2
3
4
5
go build -gcflags="-m -l" .
运行结果
# awesomeProject
./main.go:4:10: new(string) does not escape

通过分析结果可以看到,虽然还是声明了指针变量 s,但是函数返回的并不是指针,所以没有发生逃逸。

这就是关于指针作为函数返回逃逸的例子,那么是不是不使用指针就不会发生逃逸了呢?下面看个例子,代码如下:

1
fmt.Println("Golang")
1
2
3
4
5
go build -gcflags="-m -l" .
运行结果
./main.go:7:13: ... argument does not escape
./main.go:7:14: "Golang" escapes to heap

观察这一结果,你会发现「Golang」这个字符串逃逸到了堆上,这是因为「Golang」这个字符串被已经逃逸的指针变量引用,所以它也跟着逃逸了,引用代码如下:

1
2
3
4
func (p *pp) printArg(arg interface{}, verb rune) {
p.arg = arg
//省略其他无关代码
}

所以被已经逃逸的指针引用的变量也会发生逃逸

Go 语言中有 3 个比较特殊的类型,它们是 slice、map 和 chan,被这三种类型引用的指针也会发生逃逸,看个这样的例子:

1
2
3
4
5
func main() {
m:=map[int]*string{}
s:="Golang"
m[0] = &s
}
1
2
3
4
5
6
go build -gcflags="-m -l" .
运行结果
# awesomeProject
./main.go:5:2: moved to heap: s
./main.go:4:22: map[int]*string{} does not escape

从这一结果可以看到,变量 m 没有逃逸,反而被变量 m 引用的变量 s 逃逸到了堆上。所以被map、slice 和 chan 这三种类型引用的指针一定会发生逃逸的。

逃逸分析是判断变量是分配在堆上还是栈上的一种方法,在实际的项目中要尽可能避免逃逸,这样就不会被 GC 拖慢速度,从而提升效率。

小技巧:从逃逸分析来看,指针虽然可以减少内存的拷贝,但它同样会引起逃逸,所以要根据实际情况选择是否使用指针。

优化技巧

通过前面小节的介绍,相信你已经了解了栈内存和堆内存,以及变量什么时候会逃逸,那么在优化的时候思路就比较清晰了,因为都是基于以上原理进行的。下面我总结几个优化的小技巧:

第 1 个需要介绍的技巧是尽可能避免逃逸,因为栈内存效率更高,还不用 GC。比如小对象的传参,array 要比 slice 效果好。

如果避免不了逃逸,还是在堆上分配了内存,那么对于频繁的内存申请操作,我们要学会重用内存,比如使用 sync.Pool,这是第 2 个技巧。

第 3 个技巧就是选用合适的算法,达到高性能的目的,比如空间换时间。

小提示:性能优化的时候,要结合基准测试,来验证自己的优化是否有提升。

以上是基于 GO 语言的内存管理机制总结出的 3 个方向的技巧,基于这 3 个大方向基本上可以优化出你想要的效果。除此之外,还有一些小技巧,比如要尽可能避免使用锁、并发加锁的范围要尽可能小、使用 StringBuilder 做 string 和 [ ] byte 之间的转换、defer 嵌套不要太多等等。

最后推荐一个 Go 语言自带的性能剖析的工具 pprof,通过它你可以查看 CPU 分析、内存分析、阻塞分析、互斥锁分析

总结
主要学习了代码规范检查和性能优化两部分内容,其中代码规范检查是从工具使用的角度学习,而性能优化可能涉及的点太多,所以是从原理的角度讲解,明白了原理,就能更好地优化代码。

是否进行性能优化取决于两点:业务需求和自我驱动。所以不要刻意地去做性能优化,尤其是不要提前做,先保证代码正确并上线,然后再根据业务需要,决定是否进行优化以及花多少时间优化。自我驱动其实是一种编码能力的体现,比如有经验的开发者在编码的时候,潜意识地就避免了逃逸,减少了内存拷贝,在高并发的场景中设计了低延迟的架构。

坚持技术分享,您的支持将鼓励我继续创作